9 research outputs found

    An intelligent decision support system for acute lymphoblastic leukaemia detection

    Get PDF
    The morphological analysis of blood smear slides by haematologists or haematopathologists is one of the diagnostic procedures available to evaluate the presence of acute leukaemia. This operation is a complex and costly process, and often lacks standardized accuracy owing to a variety of factors, including insufficient expertise and operator fatigue. This research proposes an intelligent decision support system for automatic detection of acute lymphoblastic leukaemia (ALL) using microscopic blood smear images to overcome the above barrier. The work has four main key stages. (1) Firstly, a modified marker-controlled watershed algorithm integrated with the morphological operations is proposed for the segmentation of the membrane of the lymphocyte and lymphoblast cell images. The aim of this stage is to isolate a lymphocyte/lymphoblast cell membrane from touching and overlapping of red blood cells, platelets and artefacts of the microscopic peripheral blood smear sub-images. (2) Secondly, a novel clustering algorithm with stimulating discriminant measure (SDM) of both within- and between-cluster scatter variances is proposed to produce robust segmentation of the nucleus and cytoplasm of lymphocytic cell membranes. The SDM measures are used in conjunction with Genetic Algorithm for the clustering of nucleus, cytoplasm, and background regions. (3) Thirdly, a total of eighty features consisting of shape, texture, and colour information from the nucleus and cytoplasm of the identified lymphocyte/lymphoblast images are extracted. (4) Finally, the proposed feature optimisation algorithm, namely a variant of Bare-Bones Particle Swarm Optimisation (BBPSO), is presented to identify the most significant discriminative characteristics of the nucleus and cytoplasm segmented by the SDM-based clustering algorithm. The proposed BBPSO variant algorithm incorporates Cuckoo Search, Dragonfly Algorithm, BBPSO, and local and global random walk operations of uniform combination, and Lévy flights to diversify the search and mitigate the premature convergence problem of the conventional BBPSO. In addition, it also employs subswarm concepts, self-adaptive parameters, and convergence degree monitoring mechanisms to enable fast convergence. The optimal feature subsets identified by the proposed algorithm are subsequently used for ALL detection and classification. The proposed system achieves the highest classification accuracy of 96.04% and significantly outperforms related meta-heuristic search methods and related research for ALL detection

    Intelligent Leukaemia Diagnosis with Bare-Bones PSO based Feature Optimization

    Get PDF
    In this research, we propose an intelligent decision support system for acute lymphoblastic leukaemia (ALL) diagnosis using microscopic images. Two Bare-bones Particle Swarm Optimization (BBPSO) algorithms are proposed to identify the most significant discriminative characteristics of healthy and blast cells to enable efficient ALL classification. The first BBPSO variant incorporates accelerated chaotic search mechanisms of food chasing and enemy avoidance to diversify the search and mitigate the premature convergence of the original BBPSO algorithm. The second BBPSO variant exhibits both of the abovementioned new search mechanisms in a subswarm-based search. Evaluated with the ALL-IDB2 database, both proposed algorithms achieve superior geometric mean performances of 94.94% and 96.25%, respectively, and outperform other metaheuristic search and related methods significantly for ALL classification

    A quantitative image analysis for the cellular cytoskeleton during in vitro tumor growth

    Get PDF
    The cellular cytoskeleton is a dynamic subcellular structure that can be a marker of key biological phenomena including cell division, organelle movement, shape changes and locomotion during the avascular tumor phase. Little attention is paid to quantify changes in the cytoskeleton while nuclei and cytoplasmic both are present in subcellular microscopic images. In this paper, we proposed a quantitative image analysis method to analyze subcellular cytoskeletal changes using a texture analysis method preceded by segmentation of nuclei, cytoplasm and ruffling regions (area except nuclei and cytoplasm). To test and validate this model we hypothesized that Mammary Serine Protease Inhibitor (maspin) acts as cytoskeleton regulator that mediates cell-extracellular matrix (ECM) adhesion in tumor. Maspin-a tumor suppressor gene shows multiple tumor suppressive properties such as increasing tumor cell apoptosis and reducing migration, proliferation, invasion, and overall tumor metastasis. The proposed method obtained separated ruffling regions from segmentation steps and then adopted gray–level histograms (GLH) and grey-level co-occurrence matrix (GLCM) texture analysis techniques. In order to verify the reliability, the proposed texture analysis method was used to compare the control and maspin expressing cells grown on different ECM components: plastic, collagen I, fibronectin and laminin. The results show that the texture parameters extracted reflect the different cytoskeletal changes. These changes indicate that maspin acts as a regulator of the cell-ECM enhancement process, while it reduces the cell migration. Overall, this paper not only presents a quantitative image analysis approach to analyze subcellular cytoskeletal architectures but also provides a comprehensive tool for the biologist, pathologist, cancer specialist, and computer scientist to understand cellular and subcellular organization of cells. In long term, this method can be extended to be used in live cell tracking in vivo, image informatics based point-of-care expert system and quantification of various complex architectures in organisms

    An Intelligent Decision Support System for Leukaemia Diagnosis using Microscopic Blood Images

    Get PDF
    This research proposes an intelligent decision support system for acute lymphoblastic leukaemia diagnosis from microscopic blood images. A novel clustering algorithm with stimulating discriminant measures (SDM) of both within- and between-cluster scatter variances is proposed to produce robust segmentation of nucleus and cytoplasm of lymphocytes/lymphoblasts. Specifically, the proposed between-cluster evaluation is formulated based on the trade-off of several between-cluster measures of well-known feature extraction methods. The SDM measures are used in conjuction with Genetic Algorithm for clustering nucleus, cytoplasm, and background regions. Subsequently, a total of eighty features consisting of shape, texture, and colour information of the nucleus and cytoplasm subimages are extracted. A number of classifiers (multi-layer perceptron, Support Vector Machine (SVM) and Dempster-Shafer ensemble) are employed for lymphocyte/lymphoblast classification. Evaluated with the ALL-IDB2 database, the proposed SDM-based clustering overcomes the shortcomings of Fuzzy C-means which focuses purely on within-cluster scatter variance. It also outperforms Linear Discriminant Analysis and Fuzzy Compactness and Separation for nucleus-cytoplasm separation. The overall system achieves superior recognition rates of 96.72% and 96.67% accuracies using bootstrapping and 10-fold cross validation with Dempster-Shafer and SVM, respectively. The results also compare favourably with those reported in the literature, indicating the usefulness of the proposed SDM-based clustering method

    Effects of Noninhibitory Serpin Maspin on the Actin Cytoskeleton: A Quantitative Image Modeling Approach

    Get PDF
    Recent developments in quantitative image analysis allow us to interrogate confocal microscopy images to answer biological questions. Clumped and layered cell nuclei and cytoplasm in confocal images challenges the ability to identify subcellular compartments. To date, there is no perfect image analysis method to identify cytoskeletal changes in confocal images. Here, we present a multidisciplinary study where an image analysis model was developed to allow quantitative measurements of changes in the cytoskeleton of cells with different maspin exposure. Maspin, a noninhibitory serpin influences cell migration, adhesion, invasion, proliferation, and apoptosis in ways that are consistent with its identification as a tumor metastasis suppressor. Using different cell types, we tested the hypothesis that reduction in cell migration by maspin would be reflected in the architecture of the actin cytoskeleton. A hybrid marker-controlled watershed segmentation technique was used to segment the nuclei, cytoplasm, and ruffling regions before measuring cytoskeletal changes. This was informed by immunohistochemical staining of cells transfected stably or transiently with maspin proteins, or with added bioactive peptides or protein. Image analysis results showed that the effects of maspin were mirrored by effects on cell architecture, in a way that could be described quantitatively

    Red Blood based disease screening using marker controlled watershed segmentation and post-processing

    No full text
    Cell segmentation is a challenging problem due to the complexity and nature of the blood cells. Traditional methods of counting the cells are slow, error prone and often influenced by the performance of the operator. This paper aims to segment and count Red Blood Cells (RBCs) automatically shown in microscopic blood images to determine the condition of the person under examination. We also aim to increase the accuracy of segmentation by precisely looking into the counting of the overlapped cells which is the most conventional challenging task faced by many researchers. The RBCs in this paper are segmented using the integration of marker controlled watershed segmentation with morphological operations. The result of the proposed algorithm was validated with the manual counting method, and a good conformity of about 93.13 % was obtained. The future work will involve segmentation of more complex overlapping cells and the development of Smartphone based realtime disease screening system

    A cellular automaton model for hypoxia effects on tumour growth dynamics

    No full text
    Cancer is one of the biggest killers in the western world; every two minutes someone is diagnosed with cancer in the UK. Tumour growth and progression is a complex biological process, normally beginning with genetic mutations in a single cell. It starts with the early or avascular phase where growth is limited by nutrient diffusion, then the vascular stage where angiogenesis occurs to stimulate blood vessel production by the secretion of tumour angiogenesis factors and finally the metastasitic phase where the tumour spreads from the site of origin to distant sites around the body. While considering these events at the cellular level, these processes involve many microenvironment parameters like oxygen concentration, hypoglycaemia, acidity, hypoxia (lack of oxygen), cell-cell adhesion, cell migration and cell-extracellular matrix interactions. In this paper, a computational model is proposed which considered hypoxia as a microenvironment constraint of tumour growth. The model is built on two dimensional cellular automata grid and artificial neural network is considered for establishing signaling network of tumour cells. Each tumour cell can take its own decision in this model. A hypoxia impact was implemented in the model by varying different oxygen concentrations. The results show that hypoxia was introduced in the tumour mass due to lack of oxygen. The model measured tumour invasion and the number of apoptotic cells to support that hypoxia has a critical impacts on avascular tumour growth. This model could inform a better understanding of the impacts of hypoxia in tumour growth from the computational point of view

    Classifier ensemble reduction using a modified firefly algorithm:An empirical evaluation

    Get PDF
    In this research, we propose a variant of the firefly algorithm (FA) for classifier ensemble reduction. It incorporates both accelerated attractiveness and evading strategies to overcome the premature convergence problem of the original FA model. The attractiveness strategy takes not only the neighboring but also global best solutions into account, in order to guide the firefly swarm to reach the optimal regions with fast convergence while the evading action employs both neighboring and global worst solutions to drive the search out of gloomy regions. The proposed algorithm is subsequently used to conduct discriminant base classifier selection for generating optimized ensemble classifiers without compromising classification accuracy. Evaluated with standard, shifted, and composite test functions, as well as the Black-Box Optimization Benchmarking test suite and several high dimensional UCI data sets, the empirical results indicate that, based on statistical tests, the proposed FA model outperforms other state-of-the-art FA variants and classical metaheuristic search methods in solving diverse complex unimodal and multimodal optimization and ensemble reduction problems. Moreover, the resulting ensemble classifiers show superior performance in comparison with those of the original, full-sized ensemble models
    corecore